
AD-A,245366UNCLASSIFIED
AD-A245 366 ,s i

AFIT/EN-TR-91-10

Air Force Institute of Technology , :

Using Ada Bindings to the "

X Window System 30.v.9.

Gary W. Klabunde Mark A. Roth ,4
Capt, USAF Maj, USAF

30 December 1991

Approved for public release; distribution unlimited

92-02314
S5I lII 1111 ib~i I ll

Using Ada Bindings to the X Window System

Gary W. Klabunde
Mark A. Roth

December 30, 1991

1 Introduction

The graphical user interface has been accepted as being one of the most important parts of user interactive
software projects. Until recently, however, the design and implementation of such interfaces in Ada was a
long and difficult process. A solution to this problem was found with the introduction of the X Window
System in the mid 1980's. These C libraries make it relatively easy to construct sophisticated user interfaces.
In the last couple of years, several organizations have developed bindings to, or implementations of. the
X Window System software for use in Ada programs. Two of the more significant accomplishments were
the bindings developed by the Science Applications International Corporation (SAIC) [1, 2] and those
developed by the Boeing Aerospace Corporation [3].

In 1987, SAIC developed Ada bindings to X11R4. Their work was performed under a Software Technol-
ogy for Adaptable Reliable Systems (STARS) foundation contract, and is therefore in the public domain.
Stephen Hyland gives an overview of these bindings in [1].

In this paper we present a detailed example of how to use the SAIC and Boeing bindings to interface an
Ada program to X. We discuss issues involving SAIC/Boeing binding compatibility, pixmap creation and
use, connection with the X server, creation of several different widgets, and adding appropriate callback
procedures. We give a more general description of the issues involved in building Ada/X interfaces in [5]..

2 Ada Bindings to Xt Intrinsics and Motif

In a manner similar to that used by SAIC, the Boeing Corporation recently developed Ada bindings to
a large subset of the Xt Intrinsics and the Motif widget set. Their code also provides access to a very
limited subset of Xlib functions and data types. Like the SAIC code, Boeing's effort was sponsored by a
STARS contract. For the most part, the subroutine names and parameter lists closely mirror the actual C
routines. Also, Boeing added a few subprograms to assist in the building of some commonly used parameter
lists. The bindings require the Verdix Ada Development System (VADS) version 5.5 or higher to execute.
While the documentation on the software is relatively sparse, it does indicate which modules would require
changes in order to port the bindings to other systems.

The Boeing bindings consist of several packages, each containing bindings to a particular portion of
the X Window System. Package XLIB exports types for such things as Drawable, Screen, Window, and
Display. It also contains bindings to less than a dozen Xlib functions. The XTOOLKITINTRINSICS_
OSF package exports the Widget and Pixel types among others. It contains bindings to most of the
major Xt Intrinsics functions. The two remaining packages, XM-WIDGET.SET and MOTIFRESOURCE_
MANAGER, contain bindings for Motif vl.0 and the MRM, respectively.

Figure 1 Saber Airbase Representation

3 Combining the SAIC and Boeing Bindings

The SAIC and Boeing bindings were successfully used at the Air Force Institute of Technology (AFIT) to
create a graphical user interface for the Saber computerized wargame (4]. Saber is a theater level wargame
developed for the Air Force Wargaming Center. While some user interfaces can be developed using only
the Xt Intrinsics and a widget set, many also require some of the lower level functions provided by Xhib.
For the Saber user interface, the SAIC bindings were needed to construct the graphics contexts used to
display symbols for such things as airbases, aircraft missions, and ground units. However, making the few
calls to the SAIC code was not straightforward because of different types used by the two sets of bindings.

The code that follows was extracted from the Saber user interface. It illustrates how to connect with
the X server using the bindings and creates a symbol representing an airbase (see Figure 1). The symbol
consists of a form widget that encloses ,wo pushbutton widgets arranged vertically. The top pushbutton
is drawn with a pixmap that depicts the symbol for an airbase. Pressing this button would lower the unit
symbol to the bottom of the stack if one or more units are located beneath the visible one. The bottom
pushbutton is labeled with the identification of the airbase. Pressing this button brings up a status window
for the airbase. A complete listing of the software can be found at the end of this article.

For this sample program, we need to "include" the SAIC bindings and Boeing's Xlib, Xt Intrinsics,
and the Motif widgets. To make the program easier to read, we abbreviate (or rename) the XTOOLKIT_
INTRINSICSOSF package as simply XT. Additionally, we need access to the Verdix package COMMAND-
LINE and the predefined Ada package SYSTEM. A few declarations need to be made before getting to the
body of the main procedure. First we need declarations for the top level, form and pushbutton widgets.
We also need a declaration for the argument list used to specify resources for the widgets.

TopLevelWidget XT.Widget;
AirbaseForm XT.Widget;
AirbaseSymbol XT.Widget;
AirbaseName XT.Widget;
Args XT.Arg-List := XT.NullArgList;

Several declarations are needed to create the graphics context (GC) for the airbase symbol. The specific
declarations, however, depend on the method actually used to create the GC. Oliver Jones presented
one method for creating GC's in the September/October issue of The X Journal. An alternate niethod,
presented here, utilizes the Create.PumapFromBtmap-Data command to process the data created by
the FPitmap editor. To use this function, the pixmap data must be located in the Ada program. Thus, wO
need declarations for the pixmap that is to be created along with its width, height and bit data. 'rhie bit
data must be edited so that it is in Ada hexadecimal format. For the sake of brevity, some of the hit data
has been omitted.

2

Airbase-Pixmap X..Yindows.Pixmap;

Airbase-Width XWindows.Pixels 50;

Airbase-Height X.Windows.Pixels 30;
Airbase-.Bit-.Array X-.Windows.Bit-.Data-Array(1.-210) C

16#00#, 16#00#, 16#00#, 16#00#, 16#00#, 16#00#,
16#00#, 16#00#, 16#00#, 16#80#, 16#0f#, 16#00#,

16#00#, 16#00#, 16#00#. 16#00#, 16#80#, 16#08#,
16#08#, 16#00#, 16#00#, 16#00#, 16#00#, 16#00#,

16#cO#, 16#18#, 16#00#, 16#00#, 16#00#, 16#00#,
16#00#, 16#00#, 16#88#, 16#88#, 16#00#, 16#00#,

16#00#, 16#00#, 16#00#, 16#00#, 16#00#, 16#00#)

Airbase-Bit-.Data X-Windogs.Bjts :
new X-Wjndows .Bit-.DataArray' C Airbase.Bit..Array)

When we create the pixmap, we need to specify foreground and background colors for the symbol.
While theses values can be read in from a resource file, they are hardcoded in this example.

Airbase-.Fg-.Color X-Windows.Pixel 12; -- Blue
Airbase-.BgColor X-Windows.Pixel 0; -- White

The function to create the pixmap is an Xlib (SAIC) subroutine that cannot deal with widgets directly.
Thus, we need to obtain display, window, and screen depth data structures and resource identifiers for the
parent widget. The following variables are used to hold this information.

Boeing..Display..1d XLIB .Display-j'ointer;

SAIC-.Display-.Id X..Windows .Display;

SAIC-.Root-.Window X-Windows .Drawable;

SAIC-.Default-.Depth X-.Windows .Depth-Type;

As shown above, two variables are needed for the display structure because of different types used bN
the SAIC and Boeing bindings. The Xf-Display function returns a type defined by the Boeing bindings.
Because this value is needed by the SAIC routine to create the pixmap, the value must be converted to
an SAIC type. To accomplish this type conversion, we create an instance of the generic Ada unchecked
conversion function. A similar conversion routine is needed for the drawable structure. One last conversion
routine converts the pixmap to an address. Its purpose will be explained further as it is used.

function Display-d-From-Xt-Display is new Unchecked-.Conversion
CSource => XLIB.Display-.Pointer,
Target => X-.Windows.Display)

function Drawable.1d-.FromXtDrawable is new Unchecked-Conversion

CSource => XLIB.Drawable,
Target => 1.Windows.Drawable)

function System-.Address-From-.X..Windows-.Pixmap is new Unchecked-.Conversion
CSource => X-.Windows.Pixmap,
Target => SYSTEM.ADDRESS L

As in all X applications, the first thing the program must do is estab~lish the connection with thle-

X server. We pass in the number and values of the command line arguments provided by' the package
CONINMAND..LINE.

30

.... s

Top-.Level-.Widget :=Xt-lnitialize("saber", "Saber",
XT. Null-.Option-.List,
Command-.Line. Argc,
Command-.Line.Argv)

Once the top level widget is initialized, we can call Xtflisplay to get the Boeing version of the display
id. This value is then converted to the type needed by the SAIC bindings using the unchecked conversion
function defined earlier.

Boeing-.Display-.Id XT.Xt-.DisplayC Top_.Level_.Widget)
SAIC-.Display-.Id Display.Id.From...t-.Display(Boeing-.Display-.Id)

We also need the root window and default depth corresponding to the display id. The SAle code

contains bindings to the Xlib functions Root-Window and DefauIlDepth. Unfortunately, these functions
cannot be used. Since the connection with the X server was made using the Boeing code and not through
the SAIG bindings, several of the internal SAIC data structures were not initialized. The SAIC bindings
to Root-Window and Default-Depth rely on those data structures to function correctly. To counter this
problem, bindings for the two Xlib functions were added to the Xlib package of the Boeing bindings. These
new bindings return values that are of types specified in the Boeing software. The values returned must.
therefore, be converted to the types needed by the SAIC code.

SAIC-.Root-.Window Dravable.jd-rom..t-.Dravable(

XLIB.Root.WindouC Boeing-.Display-.Id, 0))
SAIC-.Detault-.Depth X-.Windovs .Depth-.Type(

XLIB.Defau1c-.Depth(Boeing-.Display-.Id, 0))

With the basic initialization complete, the airbase pixmap can be created by calling the Create-Pirmap-
From-Bitmap-Daia function.

Airbase-.Pixmap := X-Windows .Graphic-.Output .Create-.Pizmap.From-.Bitmap.Data(
SAIC-Display-.Id,
SAIC-.Root.Window,
Airbase-it-.Data,

AirbaseWidth,
Airbase_.Height,
Airbase-.FgColor,

Airbase-Bg-.Color,

SAIC-Detault-.Depth)

Creation of the airbase form begins with the initialization of the argument list. The Boeing indings
provide a macro to create an argument list of any size. The only constraint is that the size niu- be greater
than or equal to the number of resources to be set. Resources are then set in a manner very -inilar to the
format of normal C code. The Boeing bindings automatically take care of incrementin- 'he counter for
the actual number of arguments. The actual creation of the form widget is accomplish, i rough a call to
XmnCreate.Form as defined in the Boeing software.

Xt-.Make-.Arg-.List(SIZE => 2, ARGS => Args)

Xt-.Set-.ArgC Args, XmI...idth, 60)

Xt-.Set-.Arg(Args, XmN-.height, 60)

Airbase-Form :=m..CreateForm(Top-Level-Widget, 'fr.-Tu", Args)

After creating the form widget, the memory used by the argunier' list is freed and(a new list is created
for the next widget. This widget is a Pushibuttonl Widget that show,, thle name of thle airbase. It is at tacee
to the bottom and sidles of the Form widget just createdI.

Xt-.Clear-.ArgList(Args)
Xt-Make-Arg-.ListC SIZE => 5, ARGS => Args)
Xt-Set-ArgC Args, Xmlleft-Attachment, XSLATTACHFORM)
Xt-.Set-.ArgC Args, XmI..right..Attachment, Xm..ATTACH-FORM)
It-.Set-.Arg(Args, XmNbottom-.Attachmertt, Xm-.ATTACH-FORM)
Airbase-Name :=XmCreate-.Push-Button(AirbaseForm, "Alpha", Args);

When the airbase name pushbutton is pressed, we want to create a status window to show relevant
information about the base. For this example, we use a stubbed procedure "Show-Airbase-Status". When
adding the callback, we use the Ada address attribute to obtain the address of the callback procedure.
Since there is no clien.L data for this procedure, we pass in XT.NuII-4ddress.

XtAddCallback(Airbase-Name,
XmNactivate-.Callback,
Shov Airbase-Status 'address,
XT.NullAddress);

The airbase symbol pushbutton is then added just above the name. It is created in much the same
fashion as the name button with a couple of exceptions. First, it is attached to the top and sides of the
form widget. Also, it is explicitly attached to the name pushbutton on the bottom. The second major
difference is that instead of a text string, we wish to display the previously created airhase pixmap on the
pushibutton. This is accomplished by using the XiNiabeL-Pixmap and XmN-Iabe.Type resources. Since
the Boeing bindings do not allow an SAIC pixmap to be passed as a parameter, we must obtain the address
of the pixmap using one of our conversion routines.

Xt-.Clear-Arg-.List(Args);
Xt-..akekArg-.ListC SIZE => 8. ARGS => Arga)
Xt-.Set..ArgC Args, XmNtop..Attachment, Xm..ATTACH-FORM)
Xt-.Set-.Arg(Args, XmNlet_.Attachment, Xm-.ATTACH-.FORM)
Xt..Set-.ArgC Args, Xm-right_.Attachment, Xm-.ATTACH-.FORM)
Xt-.Set-.ArgC Args, XmN..bottom-Attachment, Xm-.ATTACH,.FORM)
Xt-.Set-.Arg(Args, XmI..bottom-Widget, Airbase-Name)
Xt-.Set..Arg(Args, XmN-.label_.Pixmap,

System-.Address-FromXWindous.YixmapC Airbase-.Pixmtap))
Xt-.SetArg(Args, XmN-.label-Type, Xm-PIXMAP);
Airbase-Symbol := Xm-Create-.PusW.Button(Airbase-Form, "Airbase", Args);
Xt-lear.Arg-.List(Args);

If there are several units in a given location, we want to rotate the units when the symbol pushibuttonl
is pressed, displaying the next unit symbol. We use a stubbed procedure " Lower-Base-Sy mbol" to perform
this function. As for the previous callback, there is no client data.

Xt_.AddCallback(Airbase_.Symbol,
XmN-.act ivat e-.Callback,
Lover-Base-.Symbol 'address,
XT.Null-Address);

Now that all of the widgets are created, they can be managed individually (They could also be managed
collectively using the Boeing binding to XLM anage Cildren).

Xt-M'anage..ChildC AirbaseSymbol)
XtManage_.ChildC Airbase-Name)

Xt-Manage-Child(Airbase-Form)

The only remaining tasks are to realize the top level widget and enter the maLin loop to process events.

XtRealizeWidget(TopLevelWidget);
XtMainLoop;

4 Conclusion

The Boeing bindings to Xt provide Ada user interface programmers with almost all of the capabilities of
their C counterparts. Although the bindings do not provide the full functionality of the Xt Intrinsics and
Motif, they are complete enough for all but the most complicated interfaces. Furthermore, the bindings
contain sufficient examples to assist in the generation of any missing bindings.

Greater flexibility in user interface design can be obtained by combining the Boeing bindings with those
developed by SAIC. As the example in this article showed, some type conversion is needed when pissing
Xt generated values to SAIC's Xlib routines. However, this type conversion is not needed for all of the
SAIC routines.

In summary, the combination of the two bindings finally provides the Ada programmer with the capa-
bility to construct professional user interfaces. These interfaces have the look and feel that today's users
have come to expect.

Acknowledgements

The research for this paper was supported by a grant from the Air Force Wargaming Center, AU CADRE/WG.
Maxwell AFB, AL, 36112.

References

[1] Hyland, Stephen J. "Ada Bindings for Xlib," The X Journal, 1(1) (September/October 1991).

[2] Hyland, Stephen J. and Mark A. Nelson. "Ada Bindings to the X Window System." Ada computer
software source code, 1987.

[3] Jones, E. J. "Ada Bindings to the Xt Intrinsics and Motif Widget Set." Ada computer software source
code, 1991.

[4] Klabunde, Capt Gary W. An Animated Graphical Postprocessor for the Saber lVargame. MS thesis,
AFIT/GCS/ENG/91D-10, School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1991.

[5] Klabunde, Gary W. and Mark A. Roth. Ada Interfaces to the X Window System. Technical Report
AFIT/EN-TR-91-9, Wright-Patterson AFB 01: School of Engineering, Air Force Institute of Technol-
ogy (AU), December 1991.

Author's Biographies

GARY W. KLABUNDE is a systems analyst/programmer with 12 months experience in writing Ada user
interfaces using the X Window System. MARK A. ROTH is an associate professor of computer systems in
the School of Engineering at the Air Force Institute of Technology. Ilis current research interests include
wargaming simulation and database management systems. Both are currently on active duty for the Unfit,'d
States Air Force. Current addresses:

6

Capt Gary WV. Kiabunde
SCC/SOSW
Offut AFB, NE

Maj Mark A. Roth
AFIT/ENG
Wright- Patterson AFB, OH 45433-6583

mnroth@afit.af.mnil

Appendix: Airbase Symbol Source Code

with XMWIDGETSET, -- Boeing bindings to Motif v1.0
X-OOLKIT-.INTRINSICS-OSF, -- Boeing bindings to Xt Intrinsics

XLIB. - Boeing bindings to Xlib

X-WINDOWS, - SAIC bindings to Xlib
COMMAND-.LINE, -- Verdix Ada package

SYSTEM, - Predefined Ada package
UNCHECKED-.CONVERSION; -- Predefined Ada package

use X-TOOLKITINTRINSICS-OSF,

XM..IDGETSET;

procedure Ada-.Example is

package XT renames XTOOLKITINTRIJSRCSQOSF;

-- Boeing Variables
Boeing..Display..Id XLIB .Display..Yointer;

Top-.Level-.Widget XT.Widget;
Airbase-.Form XT.Widget;

Airbase-.Symbol XT.Widget;
Airbase-Name XT.Widget;

Args XT.Arg-List :=XT.Null_.Arg_.List;

-- SAIC Variables

SAIC-Display-.Id X-.Windows .Display;

SAIC-.Root-Window X-Yindovs .Dravable;
SAIC-.Default-.Depth X-.Windows .Depth.Type;

Airbase-.Pixmap X-.Windows .Pixmap;
Airbase-Width X-.Windows.Pixels 50;

Airbase-.Height X-.Windows.Pixels 50;
Airbase-Bit-.Array X-Windows.Bit-Data-Array(1. .210) C

16#00#, 16400#, 16#00#, 16#00#, 16#00#, 16#00#,
16#00#, 16#00#, 16#00#, 16*80*, 16#0f#8, 16#00*,
16#00#, 16#00#, 16#00*, 16#00#, 16#80#, 16#08#,

16*00#, 16#00#, 16#00#, 16#00#. 16#00#, 16*80#,
16#08*, 16#00#, 16#00#, 16#00#, 16#00#, 16*00*,
16#cO*, 16*18*, 16#00#, 16#00#, 16#00#, 16*00#,
16#00*, 16#bO*, 16#68#, 16#00#. 16#00#, 16*00*,

16#00#, 16#00#, 16#88#, 16#88#, 16#00#, 16#00#,

16#00#, 16#00#, 16#00#, 16#e4#, 16#38#, 16#01#,

16#00#, 16#00#, 16#00#, 16#00#, 16#fa#, 16#f8#,
16#02#, 16#00#, 16#00#, 16#00#, 16#00#, 16#f9#,

16#f8#, 16#04#, 16#00#, 16#00#, 16#00#, 16#00#,
16#fd#, 16#f8#, 16#05#, 16#00#, 16#00#, 16#00#

16#80#, 16#fc#, 16#f8#, 16#09#, 16#00#, 16#00#,
16#00#, 16#80#, 16#fe#, 16#f8#, 16#0b#, 16#00#,

16#00#, 16#00#, 16#80#, 16#e#, 16#f8#, 16#0b#,
16#00#, 16#00#, 16#00#, 16#80#, 16#fe#, 16#f8#,

16#0b#, 16#00#, 16#00#, 16#00#, 16#80#, 16#fe#,

16#f8#, 16#0b#, 16#00#, 16#00#, 16#00#, 16#80#,
16#fe#, 16#f8#, 16#0b#, 16#00#, 16#00#, 16#00#,

16#80#, 16#fc#, 16#f8#, 16#09#, 16#00#, 16#00#,
16#00#, 16#00#, 16#fd#, 16#f8#, 16#05#, 16#00#,

16#00#, 16#00#, 16#00#, 16#f9#, 16#f8#, 16#04#,
16#00#, 16#00#, 16#00#, 16#00#, 16#fa#, 16#f8#,

16#02#, 16#00#, 16#00#, 16#00#, 16#00#, 16#e4#,
16#38#, 16#01#, 16#00#, 16#00#, 16#00#, 16#00#,

16#88#, 16#88#, 16#00#, 16#00#, 16#00#, 16#00#,
16#00#, 16#bO#, 16#68#, 16#00#, 16#00#, 16#00#,

16#00#, 16#00#, 16#cO#, 16#18#, 16#00#, 16#00#,
16#00#, 16#00#, 16#00#, 16#80#, 16#08#, 16#00#,
16#00#, 16#00#, 16#00#, 16#00#, 16#80#, 16#08#,

16#00#, 16#00#, 16#00#, 16#00#, 16#00#, 16#80#,

16#08#, 16#00#, 16#00#, 16#00#, 16#00#, 16#00#,
16#80#, 16#0f#, 16#00#, 16#00#, 16#00#, 16#00#,

16#00#, 16#00#, 16#00#, 16#00#, 16#00#, 16#00#
Airbase-BitData XWindows.Bits :=

new XWindows.BitDataArray'(AirbaseBitArray);

AirbaseFg-Color XWindows.Pixels 12;

AirbaseBgColor XWindows.Pixels 0;

function DisplayIdFromXtDisplay is new Unchecked-Conversion

(Source => XLIB.DisplayPointer,

Target => XWindows.Display);
function DrawableIdFromXtDrawable is new Unchecked-Conversion

(Source => XLIB.Drawable,
Target => XWindows.Drawable);

function SystemAddressFromXWindowsPixmap is new Unchecked-Conversion

(Source => XWindows.Pixmap,
Target => SYSTEM.ADDRESS);

procedure LowerBaseSymbol(Symbol-Widget : in XT.Widget) is
begin

null;
end LowerBaseSymbol;

procedure Show-.Airbase..Status(Name-Widget :in XT.Widget) is

begin
null;

end Show-Airbase-.Status;

begin

-- Establish a connection with the X server

Top-Level-.Widget :=XT. Xt-Init jalize C "board', "Board",
XT. Null-Option-List,
COMMAND-LINE. ARGC,
COMMANDLINE.ARGV)

-- Obtain display, window and depth info

Boeing...DisplayId XT.Xt-.DisplayC Top-.Level-.Widget);

SAIC-.Display-.Id Display-Id-rom-Xt-.DisplayC Boeing-.Display..Id)
SAIC-.Root-Window Drawable-IdYrom-Xt-.DrawableC

XLIB.Root-WindowC Boeing-.Display-.Id. 0))
SAIC..Default..Depth X..Windows .Depth-.TypeC

XLIB.Default-.DepthC Boeing.Display-.Id, 0))

-- Create the pixmap for the symbol pushbutton
Airbase-.Pixmap =X-Windows.Graphic-Output .Create-.Pixmap-From-.BitmapData(

SAIC-.Display-.Id,

SAIC-Root-Window,

Airbase-Bit-Data,
Airbase.Yidth,
Airbase..Height,
Airbase-.FgColor.
Airbase-.Bg..Color,

SAIC-.Default-.Depth)

-- Create the form widget to hold pushbuttons

XT.Xt-ake.Arg-.ListC SIZE => 2, ARGS => Args)
XT.Xt.Set_.Arg(Args, XmN..width, 60)

XT.Xt-.Set-ArgC Args, XmN-height, 60)
Airbase-Form := Xm-Create..FormC Top-.Level-.Widget, "form", Args)
XT.Xt-.Clear-Arg..List(Args);

-- Create the name pushbutton
XT.Xt-.Make-.Arg-.ListC SIZE => 5, ARGS => Args);
XT. Xt-.Set-.Arg(Args, XmN-left-.Attachment, XmATTACH..FORN)

XT.Xt-.Set-.Arg(Args, XmN-.right-.Attachment, Xm..ATTACH-.FORN)

XT.Xt-.Set-.ArgC Args, Xmi-bottom-.Attachment, Xm-.ATTACH-.FORM)

Airbase.Name := Xm-.Create-.Push-.ButtonC Airbase-Form, "Alpha", Args);

XT. Xt..Add.Callback(AirbaseName,
XmN-activate-Callback,

Show-.AirbaseStatus 'address,
XT.ullAddress)

-Create the symbol pushbutton

XT.Xt-ake-.Arg-.ListC SIZE => 8, ARGS => Args);

XT.Xt-.Set-.ArgC Args, XmNtop-.Attachment, Xm-ATTACW..FORM)
XT.Xt-.Set-.Arg(Args, ZmN-left-Attachment, XmITTACHFORM)
XT.Xt-~Set..ArgC Args, ImN-.right-.Attachment, Xm_.ATTACH_.FORM)
IT. Xt-.Set-.Arg(Args, XmN~.bottom-.Attachment * Xm_.ATTACH_.FORM)
XT.Xt-.Set..ArgC Args, ImN-.bottom-.Widget, Airbase-Name)

XT. Xt-.Set-.Arg(Args, XmN-.label-.Pixmap,
System-.Address-From-.XWindows-PixmapC Airbaseyixmap))

XT.Xt-.Set-.Arg(Args, XmI..label-.Type, Xm..YIXMAP);
Airbase..Symbol := Xm-Create-ush-ButtonC Airbase..Form, "Airbase", Args);
XT.Xt-.Clear-.Arg-.List(Args);

XT. Xt-.Add.CallbackC AirbaseSymbol,

XmN.activateCallback,
Lower-.Base-.Symbol' address,

XT.Null-Address);

-- Manage the widgets
XT. Xt-Manage-ChildC Airbase_.Symbol)

XT.Xt..Manage-ChildC Airbase-Name)

XT.Xt-Manage-.Child(Airbase-.Form)

XT.Xt..Realize-iWidgetC Top-Level-.Widget)

XT. Xt-Main-.Loop;

end Ada..Example;

10

RCOForm Approved
REPORT DOCUMENTATION PAGE O No 0704-0188

PV01 I leoort nc 0rp .3f - . ,eT-" . I ~2P3w -'s, .t ao"e tUI2te e0 ,epaf.nsr.Ctf te'r'Ve w - a.. -rce-s

,cOli@<-'Oe 01 1rtOfl -, Uu"le. tonS lo, r P (u ;P D.rder ; 4%nnatoO -eaoo~aerAr i eves .. nredordle ntc,,r.a n UO ' oe., sf0 *no. (r s etTerson

p.3~~~u~2'."r" -. 22 W " -a'.' PiD-0- H0 ','P,.rnP- ' ,0tr4)'4 ' AAS--t'- (K'S'

1. AGENCY USE ONLY (Leave twaet) 2. REPORT DATE 3. REPORT TYFE AND DATES COVEREDS30 December 1991 Technical Report

4. TITLE AND SUBTITLE D. FUNDING NUMBERS

Using Ada Bindings to the X Window System

6. AUTHOR(S)

Gary W. Klabunde, Capt, USAF
Mark A. Roth, Maj, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDPESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB 011 -15433-6583 REPORT NUMBER
AFIT/EN-TR-91-10

9. SPONSORING,'MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING' MONITORING

Air Force Wargaming Center AGENCY REPORT NUMBER

AU CADRE/WG
Maxwell AFB AL, 36112-5532

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION i AVAILABILITY STAT'MENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 wordS)

In this paper we present a detailed example of how to use the SAIC and Boeing bindings to interface an
-kda program to X. We discuss issues involving SAIC/Boeing binding compatibility, pixmap creation and use,
connection with the X server, creation of several different widgets, and adding appropriate callback procedures.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada, X Windows. Motif, Ada Bindings it
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORTd OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSrFIED UNCLASSIFIED L

NSN 754003:280-5500 S3'dfaC or 28 ;.

